
NRL Report 8373

An Abstract Type for Statistics Collection
in SIMULA

CARL E. LANDWEHR

Communications Sciences Division

March 10, 1980

NAVAL RESEARCH LABORATORY
Washington, D.C.

Approved for public relcase: distribution unlimited.

vr

SECURITY CLASSIFICATION OF THIS PAGE (When Dat. Entered)

REPORT DOCUMENTATION PAGE BEFORE COMPLETINGFORM

1. REPORT NUMBER 2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

NRL Report 8373
4. TITLE (and SubtItle) TYPE OF REPORT b PERIO COVERED

AN ABSTRACT TYPE FOR STATISTICS COLLECTION
IN SIMULA Final Report

6. PERFORMING ORG. REPORT NUMBER

7. AUTHOR(.) 8. CONTRACT OR GRANT NUMBER(8)

Carl E. Landwehr

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT, TASKAREA 8 WORK UNIT NUMBERS
Naval Research Laboratory NRL Problem 01 13-0
Code 7522 Task Area RRO14-09-41
Washington, D.C. 20375 Program Element 61153N

II. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
Department of the Navy March 10, 1980
Office of Naval Research 13. NUMBER OF PAGES

Arlington, VA 22217 22
14. MONITORING AGENCY NAME & ADDRESS(Il different from Controlling Office) IS. SECURITY CLASS. (of thin report)

Unclassified
sa.. DECLASSIFICATION/DOWNGRADING

SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered In Block 20, It different fro. Report)

1B. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse aid. It necee ery ind Identify by block number)

Abstract types Software Software engineering
Data abstraction Programming
Simulation Statistics collection
SIMULA Software design

20. ABSTRACT (Continue on reverse ide If necessary and Identify by block number)

Although the use of abstract types has been widely advocated as a specification and implemen-
tation technique, their use has often been associated with programming languages that are not widely
available, and examples published to date are largely of the "toy" variety. SIMULA is a widely avail-
able language that supports the use of abstract types. The purposes of this paper are (1) to demon-
strate the application of the concepts of data abstraction to a common problem; (2) to demonstrate
the use of data abstraction in a widely available language; and (3) to provide a portable facility for

(Continued)
n FORM DD JAN 7 1473 EDITION OF I NOV 65 IS OBSOLETE

S/N 0102-014-6601
SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

i

.FCF RITY CLASSIFICATION OF TIS PAGE (When D.r. Entered)

20. ABSTRACT (Continued)

statistics collection that may make the use of SIMULA more attractive. A consistent set of termin-

ology for discussing abstract types is presented, followed by a discussion of the background and re-

quirements for an abstract type for statistics collection. A SIMULA implementation is given, with

examples of its use. Finally, implementation of the abstract type in other languages is discussed.

SECURITY CLASSIFICATION OF THIS PAGE(When Dt.r Entered)

ii

--- - , __ __ - - -

CONTENTS

INTRODUCTION ... I

TERMINOLOGY .. 2

BACKGROUND ... 3

REQUIREMENTS ... 3

SIMULA IMPLEMENTATION 5

USAGE .. 11

DISCUSSION .. 16

SUMMARY .. 18

ACKNOWLEDGMENTS .. 18

REFERENCES .. 18

iii

DI-

AN ABSTRACT TYPE FOR STATISTICS COLLECTION IN SIMULA

INTRODUCTION

The use of abstract data types in the specification and implementation of programs has
received much attention in the computing literature over the last several years [1-5]. Program-
ming languages recently developed or proposed often make a point of including facilities for
type abstraction [6-101. One of the benefits of facilities of this nature should be that libraries of
useful abstract types could be constructed and used in a way corresponding to the way subrou-
tine libraries are used to compute commonly used functions. CLU [7], for example, includes a
library function for just this purpose.

Although many of the articles describing language features or specification methods using
abstract types include specifications for a few abstract types, these are generally in the nature of
simple examples, not fully elaborated definitions of types that would be appropriate for inclu-
sion in an application program. In addition, few of these languages are widely available.

SIMULA 111,12] includes many of the features for type specification that are advocated in
more recent language designs; several authors [3,6-8] cite SIMULA as a source of ideas.
There are compilers available for SIMULA on a number of widely available machines, including
DEC, IBM, Univac, and Control Data mainframes. Despite its availability and the presence of
some desirable features in the language, SIMULA has not achieved as widespread use in the
United States as several other languages for programming and simulation that have considerably
less flexibility. There are many reasons for this, not the least of which is the fact that
SIMULA, compared with GPSS, GASP, and SIMSCRIPT, provides fewer built-in functions for
statistics collection and reporting. Other contributing factors include the lack of any commercial
organization promoting the language, lack of suitable documentation until the publication of
[121, and the false perception that the language is useful only for simulation.

This report presents a set of related types defined in SIMULA suitable for the collecting
and reporting of statistics in simulation programs written in SIMULA. These types represent a
practical application of the concepts of data abstraction to a common problem, using a widely
available programming language that includes features to facilitate the use of data abstraction.
These types have been used in several simulations of queueing models and are equally applica-
ble to statistics collection in simulations generally. Our purposes are (1) to demonstrate the
application of concepts of data abstraction to a common problem; (2) to demonstrate the use
of data abstraction in a widely available programming language; and (3) to provide a portable
facility that may make the use of that language more attractive.

Before the types are presented, the terminology used to describe them is defined and the
considerations that led to the development of these types are discussed. After defining the
types, I provide examples of their use. A final section discusses problems that occurred in the
development and use of these types, and notes how additional language features (some of
which are included in CLU, Alphard [8], and the Ada proposals [9,101 might improve the

Manuscript submitted September 10, 1979.

1

C. E. LANDWEHR

implementation. Information on using these types in other SIMULA programs is discussed
later in this report. A general familiarity with SIMULA syntax is assumed.

TERMINOLOGY

Because there is no standard nomenclature for discussing types, variables, abstract types,
etc., we must define these terms briefly. A comprehensive set of definitions was proposed in
[13], and those definitions are adopted here. A variable is defined to be an information holder.
Access operators supply information to or retrieve information from variables. If a variable is
implemented using independently implemented variables, then those variables are referred to as
the representation of the newly implemented variable. Thus, the access operators of a variable
reference the representation of that variable. The implementation of a variable is the representa-
tion of that variable and the programs that provide its access operators. For any given analysis,
certain primitive variables are not considered to have an underlying representation in terms of
other variables.

An abstract specification of a variable is a description of the externally visible behavior of
its access operators. Specifications usually distinguish behavior for legal and illegal sequences of
access operator calls. A variable satisfies a given specification if its externally visible behavior
conforms to all specified requirements for legal behavior. Two specifications are equivalent if
any variable that satisfies one also satisfies the other. Given two specifications SI and S2, SI is
stronger than S2 (S2 weaker than SI) if any variable that satisfies SI also satisfies S2 and there
can be variables that satisfy S2 but not Si.

A type is an equivalence class of variables. Two primitive variables are of the same type if
their abstract specifications are equivalent. Two nonprimitive variables have the same type if
their representations have the same types and if their access operators are provided by the same
programs. An abstract type is a class of types that have common properties. For example, (1)
the types may be related by a common specification (called spec-types); (2) they may have a
common representation (rep-types); or (3) they may be simply listed as being in the same class
(enumerated-types). The types discussed below are all of the first kind-they are related by a
common specification, referred to as the characteristic specification of the abstract type.

Within the class of spec-types, three subcategories are distinguished according to the rela-
tion that the member types bear to the characteristic specification. The specifications for consti-
tuent types may be equivalent to the specification (E-spec types), weaker than the characteristic
specification (W-spec types) or stronger than the characteristic specification (S-spec types). The
abstract type described below is an S-spec type: the characteristic specification expresses com-
mon properties of statistics gathering, properties that do not depend on whether one is gather-
ing statistics about real quantities, integer quantities, etc.

Descriptions of S-spec types can be classified as independent, parameterized, or enlarged S-
spec types. Descriptions of S-spec types are independent if the member types are all indepen-
dently implemented. Parameterized S-spec types are obtained when a constant in a single type
definition is replaced by a parameter so that related, individual type descriptions can be
obtained by associating different variables with that parameter. Enlarged S-spec types are
defined by referring to existing types and giving additional representation variables and access
operators. This can be done in SIMULA using prefixed classes. The abstract type I will
describe is an enlarged S-spec type, but I will also discuss the use of parameterized S-spec types.

2

NRL REPORT 8373

BACKGROUND

The project that led to the design of the abstract type described below was the construc-

tion of a simulator for modeling traffic flow over a broadcast channel on a communications
satellite under a variety of communication protocols. The design and construction of the simu-
lator is documented in NRL technical memoranda [14-16]. Study results for particular proto-
cols and traffic distributions are documented in [17,18].

An important design goal was to produce software that would be easily modified to model

alternative protocols and traffic distributions. To this end, it was decided to employ state-of-
the-art software engineering techniques, including the use of abstract types. This decision led

to the choice of SIMULA as the programming language, since it provides better facilities for

user type specification than other available simulation languages (e.g., SIMSCRIPT, GPSS,
GASP, FORTRAN).

Although SIMULA provides a rich structure for the definition of new types, it lacks some

of the built-in facilities for statistics collection and reporting that are provided by GPSS and
GASP. Palme [19] has suggested an approach that involves adding auxiliary variables and pro-

cedures for recording purposes. As an example, an integer variable would be added to the

declarations for queues in the program to record the current length of the queue. Each time a
new instance of a queue is created, the associated statistics collection variables are created along
with it. If the programmer desires to have some queues without statistics collection, two
different declarations must be provided in the program-one for queues with statistics and one
for queues without statistics. These types must have different names even though they
represent essentially similar objects. Finally, Palme's solution does not simplify reuse of the
statistics gathering facility. Each new object type for which information is to be collected
represents a new case.

Our approach is to consider the fundamental properties required of an item of statistical
information-the information storage required and the operations desired-and to create a set
of types suited to these requirements. The general goals are:

1. Ease of use: recording statistics for a new item or deleting statistics collection
when no longer needed should be simple.

2. Encapsulation of statistical calculations: code to calculate standard statistics

(e.g., mean, variance) should be located in a single place to reduce the possibility
of errors and to simplify debugging.

3. Ease of reporting: useful reports should be easy to obtain. No elaborate format
specifications should be required.

4. Reusability: the facilities constructed should be usable in other SIMULA pro-
grams with few or no changes.

REQUIREMENTS

For any queueing simulation, two kinds of reports are generally desired: statistical sum-
maries of the value of some variable and history traces or histograms of the values assigned to
a variable throughout the run. The statistical summaries are usually limited to observations of

3

C. E. LANDWEIIR

the first two moments of the variable, since obtaining the required number of replications to
generate statistically significant measures of higher moments is often difficult. Traces are most
often used in debugging or in checking that the behavior of an indicator variable over simulated
time is as expected. Histograms may be applied to similar ends or may be used to gain intuition
about the general shape of a probability distribution.

In addition to supporting the collection of data for such reports, a mechanism is required
to support the generation (printing) of the reports. Thus a name and description for each

variable is needed, and there must be an access program that initiates the generation of a
report.

The required access functions are:

* Initialization: the name and description of the variable to be recorded must be
supplied, and the type of statistics desired (e.g., simple statistical summary, sum-
mary and histograms, trace) must be defined before collection can begin.

* Measurement: each time a significant change occurs in the variable to be
recorded, the values of the corresponding statistics must be updated.

* Reporting: at the end of the run, the records must be computed and printed.

Our next step in refining these general requirements is to specify in detail the statistics
desired in the reports. I chose:

1. Number of observations of the variable

2. Sum of all observations of the variable

3. Times of first and last observation

4. Minimum and maximum values observed for the variable

5. Mean and variance of the variable based on equal weight per observation

6. Mean and variance of the variable based on time-weighted observations

For the histograms, the number of bins and the bin boundaries must be specified. As in the
fifth and sixth items above, the histogram may be generated weighting all observations equally
or weighting each observation by the time until the next observation occurs. Traces can be
handled with the histogram mechanism by using the time of occurrence as the observation and
the value of the variable to be recorded as the weighting factor.

The final requirement is that the implementation of this abstract type consume a
minimum of computing resources. Simulations generally are heavy consumers both of storage
and of processing time, and if statistics collecting and reporting consume too many resources,
the simulation may have to be restricted in other areas (e.g., fewer runs will be made or less
detailed models will be necessary).

4

NRL REPORT 8373

SIMULA IMPLEMENTATION

This section describes the abstract type for statistics collection as it has been implemented
in SIMULA. No formal specifications were written in this project. Since it was a one person
effort, the additional burden of constructing formal specifications seemed unwarranted. Conse-
quently, the SIMULA code corresponds both to the specification and implementation of the
types. Because of the structuring facilities provided by SIMULA, I think the absence of
separate formal specifications is not serious.

Before describing the details of the implementation, I will give a brief example of the use
of the facility. To initialize a variable for recording statistics on the number of idle servers in a
queueing system, for example, one writes:

nidleserver:-new STATINT("Nidleserver","Number of idle servers");

This statement both allocates and initializes a variable for collection of integer statistics. The
name and meaning of the variable to be recorded are given as arguments to STATINT so that
they may be used later in the generation of reports.

To record a new observation of the number of idle servers, one writes:

nidleserver.update(nidle, time);

Here we assume that the integer variable nidle has as its value the current number of idle
servers and that the real variable time records the time of the observation.

At the end of a simulation, a statistical summary for nidleserver is generated by the follow-
ing statement:

nidleserver.report;

The report generated in this case is a two-line summary of the behavior of the variable during
the simulation run, labelled with the name and description provided when nidleserver was ini-
tialized.

A more detailed description of the usage of the facility is given below, but these three
types of statements are the primary ones required by a user. In fact, the report generation for
all statistics variables can be handled by a simple loop; there is no need for a separate state-
ment to request a report for each variable.

In the example above, nidleserver is an instance of the SIMULA class STATINT; in the
terminology defined in this report, STATINT is a type. The abstract type for statistics collec-
tion in fact includes four separate types: STATINT, STATINTHIST, STATREAL, and STAT-
REALHIST. Each of these types is defined in terms of lower level types: STATINT and STA-
TINTHIST are both enlarged types based on another type named SINTOPS. Similarly, STAT-
REAL and STATREALHIST are enlarged types based on SREALOPS. Both SREALOPS and
SINTOPS are enlarged types based on a type named STAT. STAT is itself based on a built-in
SIMULA type for linked lists called LINK. Figure 1 displays these relationships graphically.

5

C. E. LANDWEHR

STATINTHIST STATREAL

SREALO

STATREALHIST

STAT

I

LINK

(arrows point to the enlarged type from the type on which it is based)

Fig. 1 - Relations among types

Table 1 - Types and access functions

Type (=CLASS name) Access functions implemented
by this CLASS

STATINT UPDATE simple integer statistics
STATINTHIST UPDATE,OUTHIST integer statistics and histograms
STATREAL UPDATE simple real statistics
STATREALHIST UPDATE,OUTHIST real statistics and histograms
SINTOPS REPORT,EMEAN*,EVAR* groups access functions

common to integer statistics
SREALOPS REPORT,EMEAN*,EVAR* groups access functions

common to real statistics
STAT TMEAN*,TVAR* groups access functions

common to all statistics
LINK INTO,OUT,PRECEDE,FOLLOW access functions for

linked list elements
*denotes access function not intended to be used directly by user programs

6

STATINT

SINTOPS

Purpose

NRL REPORT 8373

Table 1 lists the type names and the access functions implemented for each type. The
access functions available to users of a given type include those implemented by that type and
also those implemented by the type on which that type is based. Thus the access functions
available for objects of type STATINT include REPORT and INTO as well as UPDATE. As
the table shows, certain access functions are not intended to be called directly by users of the
types. This intention could be enforced by using the HIDDEN and PROTECTED features of
SIMULA, but in the case at hand (a one-person project) this added protection was not neces-
sary.

The DEC PDP-10 SIMULA [20,21] code for the implementation of the abstract type is
displayed in Figs. 2 through 9. Now I will describe the individual types starting with STAT,
which is the basis for the other types.

The characteristic specification for the type STAT corresponds to the code presented in
Fig. 2 for class STAT. This class is prefixed by link (a built-in SIMULA type for elements of a
linked list) to allow each instance of the abstract type STAT to be linked together with the oth-
ers in a single list. Thus STAT (and all other classes prefixed with link) are enlarged types that
have the characteristic specification for link in common. Similarly, the variables and procedures
declared in STAT are provided to all of the instances of other classes (defined below) prefixed
by STAT. The declaration of procedure REPORT as virtual indicates that this operation can be
applied to objects of type STAT but the procedure will be specified at the higher levels of
classes with the STAT prefix. The reason for this construction is explained below. Procedures
TMEAN and TVAR compute the mean and variance for the time-based statistics collection,
and are only called from within the type. These procedures return a boolean value indicating
whether a valid mean or variance could be computed. The actual mean or variance computed is
left in a variable accessible to all of the procedures defined within STAT.

envelope class for all types of statistics,

link class stat(vnamevdesc);value vname,vdesc;
text vname; Iname of variable being observed;
text vdesc; Idescription of variable observed;
virtual: procedure report; IproceduLe to print results;

begin integer nobs; Inumber of observations;
real tfiLstobs, Itime of first observation;

tlastobs, !time of last observation;
valtint, !time integral of observed value;
valsqtint, Itime integral of square of observed value;
timemean, Imean over time;
timevar, Ivariance over time;
eventmean, Imean over number of observations;
eventval, lvariance over " "

tinc; Itemporary;
boolean procedure tmean; !computes time-average;

if tlastobs>tfiLstobs
then begin timemean:=valtint/(tlastobs-tfiLstobs);

tmean:=tLue;end
else tmean:=false;

boolean procedure tvar;
if tlastobs>tfirstobs

then begin timevaL:=(valsqtint-(valtint*(valtint/(tlastobs-tfitstobs))))
/(tlastobs-tfirstobs);

tvar :=tLue;end
else tvar:=false;

end of stat;

Fig. 2 - Class STAT

7

C. E. LANDWEIIR

envelope class fot statistics collection -- integet variables;

star class sinrops;
begin integeL val, Hinitial value of variable to be logged;

sum, !running sum of values;
ssq, !sum of squates of values;
max, !maximum value observed;
min; !ninimum value obseLved;

boolean pLocedute emean;
if nobs>0 then begin

evenrmean:=sam/nobs;
emean:=crue;end

else emean:=false;
boolean proceduLe evar;

if nobs>l then begin
eventvaL:=(ssq-(sum*(sum/nobs)))/(nobs-l);
evaL:=rLue;end

else evaL:=false;

pLocedure report; !proc to print Lesults of simulation;
begin integer nspaces,i,j;

nspaces:=20-vname.length;
!code to output fiLst line of summaLy statistics;

!second line of

if nspaces<=0 then outp.ourtext(vname.sub(l,20))
else begin; outp.outtext(vname);

outp.outtext(blanks(nspaces));
end;

if nobs=0 then outp.ourtext(" no observations recotded")
else begin
ourp.ourint(nobs,12); !number of observations;
ourp.outint(min,12); !minimum value observed;
if tmean then outp.outfix(timemean,4,12) Itime average;

else outp.outtext(" undefined ");
if emean then outp.outfix(eventmean,4,12) levent average,

else outp.outtext(" undefined n);

outp.outfix(tfirstobs,3,11);
end;
outp.outimage; !end of line 1;
summary;

nspaces:=20-vdesc.length;
if nspaces<=0 then outp.outtext(vdesc.sub(l,20))

else begin outp.outtext(vdesc);
outp.outtext(blanks(nspaces));

end;
if nobs ne 0 then begin
outp.outint(sum,12);outp.outint(max,12);
if tvat then outp.outfix(timevar,4,12) Itime variance;

else outp.outtext(" undefined ");
if evat then outp.outfix(eventvar,4,12) levent variance;

else outp.outtext(" undefined ");
outp.outfix(tlastobs,3,11)
end;
ourp.outimage; !end of second line;
if vdesc.length>20 !is thete moLe to pLint?;

then begin !yes;
j:=20;
for i:=21 step 20 until vdesc.length do

begin;
if i+j>vdesc.length then j:=vdesc.length-i+l;
outp.ourtext(vdesc.sub(i,j));
outp.outimage;
end;

end;
end;

linitialization;
nobs:=sum:=ssq:=val:=0;
min:=1000000;max:=-1000000;
tfiLstobs:=tlastobs:=valtint:=valsqtint:=O.O;
end of sintops;

Fig. 3 - Class SINTOPS

8

NRL REPORT 8373

I envelope class for statistics collection -- real variables;

I **;

stat class stealops;
begin teal val, linitial value of variable to be logged;

sum, Irunning sum of values;
ssq, Isum of squares of values;
max, Imaximum value observed;
min; Iminimum value observed;

boolean procedure emean;
if nobs>O then begin

eventmean:-sum/nobs;
emean:-true;end

else emean:-false;
boolean procedure evar;

if nobs>l then begin
eventvar:-(ssq-(sum*(sum/nobs)))/(nobs-l);
evaL:.true;end

else eva:-false;

procedure report; Iproc to print results of simulation;
begin integer nspaces,i,j;

nspaces:=20-vname.length;
Icode to output first line of summary statistics;

Isecond line of

if nspaces<=O then outp.outtext(vname.sub(l,20))
else begin; outp.outtext(vname);

outp.outtext(blanks(nspaces));
end;

if nobs=O then outp.outtext(" no observations tecorded")
else begin
outp.outint(nobs,12); !number of observations;
outp.outfix(min,4,12); Iminimum value observed;
if tmean then outp.outfix(timemean,4,12) !time average;

else outp.outtext(" undefined ");
if emean then outp.outfix(eventmean,4,12) levent average;

else outp.outtext(" undefined ");
outp.outfix(tfitstobs,3,11);
end;
outp.outimage; lend of line 1;
summary;

nspaces:=20-vdesc.length;
if nspaces<=O then outp.outtext(vdesc.sub(l,20))

else begin outp.outtext(vdesc);
outp.outtext(blanks(nspaces));

end;
if nobs ne 0 then begin
outp.outfix(sum,4,12);outp.outfix(max,4,12);
if tvaL then outp.outfix(timevar,4,12) !time variance;

else outp.outtext(" undefined ");
if evaL then outp.outfix(eventvar,4,12) !event valiance;

else outp.outtext(" undefined ");
outp.outfix(tlastobs,3,11);
end;
outp.outimage; lend of second line;
if vdesc.length>20 !is there mote to print?;

then begin !yes;
j:=20;
fox i:=21 step 20 until vdesc.length do

begin;
if i+j>vdesc.length then j:=vdesc.length-i+l;
outp.ourtext(vdesc.sub(i,j));
outp.outimage;
end;

end;
end;

!initialization;
nobs:=sum:=ssq:=0;
min:=l00uUO;rncax:=-lU0003;
tfiLstobs:=tlasrobs:=valtint:=valsqtint:=val:=O.O;
end of sLC310pS;

Fig. 4 - Class SREALOPS

9

C. E. LANDWEHR

Iclass fot recording integer variables with histograms;

sintops class statinthist(nbins,htype,loweLbd,inc);
integer nbins; InumbeL of bins for histogram;
integet htype; lif =htime, weight each obs by time since last obs;

!if =hevent, all observations count equally;
lif =htLace, record time as observation and value as weight;

integer lowerbd, Ibound of first bin;
inc; !increment for succeeding bins;

begin real array ail:nbins+l),b(l:nbins); !a must be one element longer than b;
Ihistogram is generated in a, bins are defined by b;

procedure update(newval,tobs); Iroutine to be called fot new observation;
integer newval; Ithe new value observed;
real tobs; !time of the observation;

begin;
nobs:=nobs+l;
if nobs=l then tfirstobs:=tobs;
sum:=sum+newval;
ssq:=ssq+newval*newval;
tinc:=val*(tobs-tlastobs)
valtint:=valtint+tinc;
valsqtint:=valsqtint+val*tinc;
if max<newval then max:=newval;
if min>newval then min:=newval;
if htype=hevent then histo(a,bnewval,l)

else if htype=htime then histo(a,b,newval,tobs-tlastobs)
else if htype=htrace then histo(a,b,tobs,newval);

tlastobs:=tobs;
val:=newval;

end of update;
pLocedure outhist;
begin
phist(vname,vdesc,nbins+l,a,b,htype); !print hist with proc, give real arraysize;
end;
begin integer i; !intialization of bins;

for i:=l step 1 until nbins do b(i):=lowerbd+(i-l)*inc;
end;

end of statinthist;

Fig. 5 - Class STATINTHIST

I!******************;

I class foL recording statistics of integer variables without histograms;

sintops class statint;

begin, procedure update(newval,tobs); Iroutine to be called for new observation;
integer newval; Ithe new value observed;
real tobs; Itime of the observation;

begin;
nobs:=nobs+l;
if nobs=l then tfirstobs:=tobs;
sum:=sum+newval;
ssq:=ssq+newval*newval;
tinc:=val*(tobs-tlastobs);
valtint:-valtint+tinc;
valsqtint:=valsqtint+val*tinc;
if max<newval then max:=newval;
if min>newval then min:-newval;
tlastobs:=tobs;
val:-newval;

end of update;
end of statint;

Fig. 6 - Class STATINT

10

NRL REPORT 8373

There are two types defined with prefix STAT: SINTOPS and SREALOPS (Figs. 3 and
4). As the names imply, SINTOPS provides the storage and operations for integer variables for
which statistics are desired, and SREALOPS provides the corresponding services for real vari-
ables. (SIMULA defines types for real and integer variables much as they are in ALGOL or
FORTRAN.) These operations cannot be provided directly at the STAT level because, for
example, the value of the minimum observation of a real (integer) variable must be stored in a
real (integer) variable. Thus, essentially identical sets of operations are provided with
differences only in the types of the variables. The REPORT procedures for reporting summary
statistics are provided at this level for the same reason: the output format requirements are
different for integer and real variables.

There are two types defined with prefix SREALOPS and two with prefix SINTOPS. The
classes STATINTHIST (Fig. 5) and STATINT (Fig. 6) are prefixed by SINTOPS, and STAT-
REALHIST (Fig. 7) and STATREAL (Fig. 8) are prefixed by SREALOPS. The division in this
case is between variables for which histograms are to be collected and reported and those for
which only statistical summaries are required. This division is motivated by the final require-
ment discussed previously in the Requirements section: that the implementation of the type
require as few resources as possible. Since the storage needed for the data collected to generate
a histogram or trace considerably exceeds that required for generating a simple statistical sum-
mary, different types are defined for the two cases. The update operations are provided at this
level since the definitions of what statistics to save depends both on the type of the variable
being recorded and on whether a histogram is to be generated or not. The built-in SIMULA
function HISTO is used to record data for histograms. STATINTHIST and STAT-
REALHIST contain special operations for generating histograms; in both cases, the operation
OUTHIST simply calls a global histogram printing routine, PHIST (Fig. 9), to do the actual
output. This routine was made global to avoid duplicating the code for it within the STAT-
INTHIST and STATREALHIST declarations.

USAGE

To employ these types in a simulation is straightforward. For each variable about which
statistics are to be collected, a statistics collection variable must be declared, allocated, and
linked into the statistics pool (Fig. 10a). At each place the value of the variable is to be
recorded, the update operation must be invoked (Fig. 10b). At the end of the run, the report
operation can be used to generate the statistical summary, and, if a STATINTHIST or STAT-
REALHIST variable was created, the OUTHIST operation will print a histogram when it is
called. If all statistics variables are linked in a single pool, a simple iteration can be written to
sequence through them, generating a report for each. Histograms can be generated in a similar
fashion, although it must be verified that each variable is of the appropriate type. Figure 11
displays a code loop that generates all of the statistical output for a simulation run.

Occasionally, a user may wish to get a histogram for a variable that was not previously
recorded in this fashion. The only changes required to accomplish this are to alter the declara-
tion slightly and to expand the initialization statement to include the histogram-dependent
information, such as bin size, number of bins, lower bound, etc. (Fig. 12). No changes in the
update instructions or printing routines are required. Conversely, to save the storage occupied
by a histogram no longer of interest, the user merely replaces the histogram declaration and ini-
tialization statements with their simpler counterparts.

11

C. E. LASDWEIIR

Iclass for Lecording teal variables with histograms;

I ********************;

stealops class statrealhist(nbins,htype,lowerbd,inc);
integet nbins; Inumber of bins for histogram;
integer htype; lif -hevent, all observations count equally;

lif -htime, weight each obs by time since last obs;
lif -htrace, tecord tobs as observation weighted by newval;

Leal lowerbd; Ibound of fitst bin;
real inc; lincrement for successive bins;

begin real artay a(l:nbins+l),b(l:nbins); !a must be one element longer than b;
!histogram is generated in a, bins are defined by b;

procedure update(newval,tobs); Iroutine to be called for new observation;
Leal newval; Ithe new value observed;
real tobs; Itime of the observation;

begin;
nobs:=nobs+l;
if nobs-l then tfirstobs:-tobs;
sum:=sum+newval;
ssq:=ssq+newval*newval;
tinc:=val*(tobs-tlastobs);
valtint:=valtint+tinc;
valsqtint:-valsqtint+val*tinc;
if max<newval then max:=newval;
if min>newval then min:=newval;
if htype=hevent then histo(a,b,newval,l.O)

else if htype=htime then histo(a,b,newval,tobs-tlastobs)
else if htype=httace then histo(a,b,tobs,newval);

tlastobs:-tobs;
val:snewval;

end of update;
procedure ourhist;
begin
phist(vname,vdesc,nbins+l,ab,htype); !use proc to gen hist (give real array size);
end;
begin integer i; linitialize bins;

foL i:=l step 1 until nbins do b(i):=lowetbd+(i-l)*inc;
end;

end of statLealhist;

Fig. 7 - Class STATREALHIST

!class for recording real variables, no histogram;

! **********************;

srealops class statteal;
beg in

procedure update(newval,tobs); !routine to be called for new observation;
.teal newval; !the new value observed;
real tobs; !time of the observation;

begin;
nobs:=nobs+l;
if nobs=l then tfiLstobs:=tobs;
sum:=sum+newval;
ssq:=ssq+newval*newval;
tinc:=val*(tobs-tlastobs);
valtint:=valtint+tinc;
valsqtint:=valsqtint+val*tinc;
if max<newval then max:=newval;
if min>newval then min:=newval;
tlastobs:=tobs;
val:=newval;

end of update;
end of statreal;

Fig. 8 - Class STATREAL

12

NRL REPORT 8373

! **************;

I procedure to pLint histograms;

***** ** ****

procedure phist(vn,vd,nb,a,b,htype); value vn,vd;
text vn,vd; !variable name and description;
integer nb; !number of elements in a;
Leal htype; !type of histogram this is;
Leal array a,b; !a contains histogram counts, b gives bin boundaries;

begin integeL nx,i,j; !temporaLies;
integer hwidth; Ihistogram width;
teal nscale; !scale factoL;
teal xmax; !largest data value;
hwidth:-50; Iset width of histograms;
xmax:=0.0;
for i:=l step 1 until nb do if a(i)>xmax then xmax:=a(i);
if htype=hevent then nscale:=entier(xmax/hwidth)+l

else if htype=htime or htype=htrace then
nscale:=xmax/hwidth;

outp.outimage;eject(l);
outp.outtext("Histogram for variable ");outp.outtext(vn);outp.outtext(":");outp.outimage;
outp.outtext(vd);outp.outimage;
outp.outimage;
if nscale=O then outp.outtext("No observations recorded.")

else begin
outp.outtext(" each x = ");outp.outfix(nscale,4,12);
if htype=hevent then begin

outp.outtext(" observation"); if nscale=l then outp.outtext(".") else outp.outtext("s.");
end;

outp.outimage;
outp.outimage;
if htype=hevent oL htype=htime then outp.outtext(" uppeL")

else if htype=htrace then outp.outtext(" time period");
if htype=hevent then outp.outtext(" number ");
outp.outimage;
if htype=hevent or htype=htime then outp.outtext(" bound")

else if htype=htrace then outp.outtext(" ending");
if htype=hevent then outp.outtext(" obs ")

else if htype=htime then outp.outtext(" frequency")
else if htype=htLace then outp.outtext(" value");

outp.outimage;
fot i:=l step 1 until nb do

begin
if i<nb then outp.outfix(b(i),4,12)

else begin outp.ourchaL('>');outp.outfix(b(nb-1),4,11);end;
outp.outfix(a(i),4,12)
outp.outchai('I')'
nx:=entiet(a(i)/nscale);
foL j:=l step 1 until nx do outp.outchar('X');
outp.outimage;
end;

end;
outp.outimage;outp.outimage;outp.outimage,

end;

Fig. 9 - Procedure PHIST

13

C. E. LAN4DWEHR

ref (head) statpool;

statpool:-new head;

ref (statint) nmsgbacklog;

0 appears once per simulation

!declaration for statistics
collection variable;

nmsgbacklog:-new statint ("nmsgbacklog","Number of messages not yet
transmitted"); !allocation and initialization of

same variable;

nmsgbacklog.into(statpool); !linking of variable into
statistics pool;

a. Declaration, allocation and initialization, and linking into

statistics pool

(code to generate a new message and queue it)

nmsgbacklog.update(nmsgbacklog.val+l,time); !record the incremented
value as observed at the

current time;

b. Example of recording an observation (Note that in this case,

the statistics variable itself is used to record the value of
the backlog.)

Fig. 10 - Declaration, initialization, and use of type for collection of simple summary statistics

14

NRL REPORT 8373

!Print reports for all variables in the statistics pool. (First print ;
!statistical summaries for all variables and then histograms for those ;
!variables that are of type statrealhist or statinthist.)

outp.outtext("Simulation Statistics");

outp.outimage;outp.outimage;

outp.outtext(" Variable
mean first obs");

outp.outtext("

nce last obs");

outp.outimage;outp.outimage;

svar:-statpool.first;

while svar =/= none do

begin

end;

svar.report;

outp.outimage;
svar:-svar.suc;

outp.linesperpage(-l);

svar:-statpool.first;

!print general heading (outp has
been previously declared and
initialized as a SIMULA printfile);
!skip two lines:

obs minimum time mean
!first line of heading;

sum maximum variance
!second line of heading;

event

varia

!force out header and skip;

!get first statistics variable
(svar previously declared
ref(stat));
!this loop prints summaries only
for all statistics variables;
!writes the report for this
variable;
!skip a line;

Aget next statistics variable;

!suppress page skips for
histograms;

!re-initialize to generate all
histograms together;

while svar=/=none do
begin
inspect svar when statinthist do svar qua statinthist.outhist

when statrealhist do svar qua statrealhist.outhist;

!the above statement checks that the current svar is of a histogram
type and (if so) prints it with the operation for that type;

svar:-svar.suc; !get the next one;
end;

Fig. I I - Output generation for statistical variables of all types

15

C=
:Z:
cll�
r-

4.11,

�r

rr
M

C. E. LANDWEIHR

ref (statinthist) nmsgbacklog; !declaration for integer
statistics variable with histogram
generation;

nmsgbacklog:-new statinthist ("nmsgbacklog","Number of messagest not yet
transmitted",20,htime,0,1);

!allocation and initialization for a histogram with 20 bins, using
time-weighted observations (htime is a global integer variable with
value 2), lower bound of the first bin is 0, and the increment for
each bin is 1.;

nmsgbacklog.into(statpool); !link variable into statistics
pool;

a. Declaration, allocation, and initialization of a variable to

collect both statistical summaries and a histogram.

nmsgbacklog.update(nmsgbacklog.val+l,time); !record observation;

b. Example observation of variable thpt collects both summary
information and histogram. (see Fig. lOb)

Fig. 12 - Example of declaration, allocation, initialization, and use of a variable
to collect both a statistical summary and a time-weighted histogram

DISCUSSION

The abstract type just presented has been used without change in three versions of one
simulator and in two separately developed simulators. It provides a useful facility in its present
form. Experience indicates that the separation of histogram generation and simple statistical
summaries is valid-if storage becomes tight in the simulation, a good deal can be saved by
altering variables for which histograms had been generated to collect statistical summaries only
There are, however, some deficiencies in the SIMULA facilities for type specification that are
underlined by this example.

The most noticeable of these is the inability to allow the type of a parameter itself to be
parameter in a class definition. If this were possible, there would be no need to separate the
SREALOPS and SINTOPS classes; the same code could be used for both and would only need
to appear once. The abstract type could then be constructed as a parameterized S-spec type
instead of an enlarged S-spec type. The operations presently implemented in SREALOPS and
SINTOPS would be placed in STAT and a parameter would be added to STAT to specify the
type (integer or real) of the variable about which statistics would be collected. In fact, the

16

NRL REPORT 8373

STATREAL and STATINT classes could also be merged in such an environment, since, again,
the only difference in the code between the two classes is in the types of the variables refer-
enced.

In the terminology defined above, SIMULA only partially supports the specification of
parameterized S-spec types. Such types can be specified where the values of a parameter in a
CLASS specification are used to distinguish different member types, but types in which the

parameter type itself varies among members of the abstract type can only be specified (as I
have done) with enlarged types, using the class prefixing mechanism.

The difference between statistics collection variables that allow reporting of statistical
summaries and those that allow histogram generation now appears to be the only substantive
one. A tree that outlines a revised type structure based on preserving only this distinction is
shown in Fig. 13. Notice that this revision combines STATINTHIST and STATREALHIST.
This combination implies that PHIST no longer need be a globally defined subroutine-it can
be included in its natural place as an operation on variables of type STATHIST without requir-
ing two copies of the same code.

STATFI
UP]

OU

STAT(vname,vdesc,vtype)
REPORT
TMEAN*
TVAR*
EMEAN*
EVAR*

ST(nbinshtype,1owerbd,inc)
DATE

THIST

*denotes access functions not intended to be called directly by user programs

(arrows point to enlarged type from the type on which enlarged type is based)

Fig. 13 - Revised type structure

STAT now includes an argument (vtype) to distinguish whether statistics are to be
recorded for a real or an integer variable. This parameterization could allow all of the opera-
tions listed to be coded only once and would eliminate the level introduced by SREALOPS and
SINTOPS. STATSUM would define a single version of the update operation for variables only
requiring statistical summaries, and STATHIST would include storage and operations to record
(via update) and print (via outhist) histograms as well.

17

STATSUM
UPDATE

C. E. LANDWEIIR

In the revised structure, STAT specifies a set of types, with one member for each possible
value of vtype. STATSUM and STATHIST are enlarged types based on STAT (instantiated
with a given parameter value for vtype). The principle advantage of the revised structure is the
elimination of several nearly duplicate sections of source code required by the constraints of
SIMULA. Nearly all of the code in Figs. 3, 6, and 7 could be removed. This revision would, it
appears, be feasible in either of the Ada languages described in [9, 10] through use of the over-
loading and generic capabilities. In CLU [71, parameterized clusters might be used in the imple-
mentation. Alphard [8] also includes mechanisms that could be used to implement the revised
structure.

Despite the advantages that the newer languages have in the implementation of such a
facility, the user interface presented by the statistics collection type in the newer languages
would probably not be substantially different from that of the present facility. Nor would the
revised version be likely to require less computing time per call (although storage requirements
might be slightly decreased). Viewed in this way, and considering the relatively wide availabil-
ity of SIMULA, I believe that the abstract type presented above should be helpful in construct-
ing simulation programs for some time to come.

SUMMARY

In the preceding sections, we have displayed an abstract type for statistics collection in
SIMULA. The requirements for the type, the programs implementing it, and the use of the
type in a SIMULA program have been presented and discussed. The implementation has been
described in a consistent nomenclature, and limitations in SIMULA that prevent use of a more
desirable implementation strategy have been noted in the same nomenclature. Despite these
limitations, the use of abstract types for software design and implementation in conjunction
with the mechanisms provided by SIMULA has proven to be a useful technique in program
construction.

ACKNOWLEDGMENTS

Several colleagues at the Naval Research Laboratory have helped in the preparation of this
report. In particular, the author is indebted to Drs. J. Shore and D. Parnas for the nomencla-
ture defined in the Terminology section and used throughout the paper. Dr. Shore also pro-
vided a thorough review of earlier drafts of the paper, as did D. Weiss and Drs. D. Baker and J.
Gannon.

REFERENCES

1. K. Gries and N. Gehani, "Some ideas on data types in high level languages," Comm. ACM
20, 6 414-420 (June 1977).

2. J.V. Guttag, "Abstract data types and the development of data structures," Comm. ACM
20, 6 396-404 (June 1977).

3. J.V. Guttag, E. Horowitz, and D.R. Musser, "Abstract data types and software validation,"
Comm. ACM 21, 12 1048-1064 (Dec. 1978).

4. B. Liskov and S. Zilles, "Programming with abstract data types," SIGPLAN Notices 9 50-59
(April 1974).

18

NRL REPORT 8373

5. D.L. Parnas, J.E. Shore, and D.M. Weiss, "Abstract types defined as classes of variables,"
NRL Report 7998, April 1976.

6. C.M. Geschke, J.H. Morris, and E.H. Satterthwaite, "Early experience with Mesa," Comm.
ACM20, 8 540-553 (Aug. 1977).

7. B. Liskov, A. Snyder, R. Atkinson, and C. Schiffert, "Abstraction mechanisms in CLU,"
Comm. ACM 20,8 564-576 (Aug. 1977).

8. W.A. Wulf, R.L. London, and M. Shaw, "An introduction to the construction and
verification of Alphard programs," IEEE Trans. on Software Eng. SE-2, 4 253-265 (Dec.
1976).

9. Green Programming Language Reference Manual, Honeywell, Inc., and Cii Honeywell
Bull, March 1979.

10. J. Nestor and M. Van Deusen, "Red Language Reference Manual," Intermetrics, March
1979.

11. G. Birtwistle, O.J. Dahl, B. Myrhaug, and K. Nygaard, SIMULA Begin, Auerbach Publish-
ers, Philadelphia, Pa., 1973.

12. W.R. Franta, A Process View of Simulation, Elsevier, North Holland, N. Y., 1977.

13. D.L. Parnas and J.E. Shore, "Language facilities for supporting the use of data abstractions
in the development of software systems," NRL Internal Report, February 1978.

14. C.E. Landwehr, "On the design of a simulator for satellite communications," NRL Techni-
cal Memorandum 5403-85, March 1977.

15. C.E. Landwehr, "Construction and validation of the Satellite Communications Simulator,"
NRL Technical Memorandum 5403-259, June 1977.

16. C.E. Landwehr, "SIMULA and events," NRL Technical Memorandum 7503-113, April
1978.

17. C.E. Landwehr, "Performance studies of the distributed CPODA protocol in the Mobile
Access Terminal network," NRL Memorandum Report 4084, September 1979.

18. M. Melich, C.E. Landwehr, and P. Crepeau, "Analysis of alternative satellite channel
management systems," NRL Report, to appear, winter, 1980.

19. J. Palme, "Putting statistics into a SIMULA program." Available as NTIS PB-243 785,
July 1975.

20. S. Arnborg, 0. Bjorner, L. Enderin, E. Ergstrom, R. Karlsson, M. Ohlin, J. Palme, I.
Wennerstrom, and C. Wihlborg, Decsystem 10 SIMULA Language Handbook, Part II, Dec.
1974. Available as NTIS PB-243 065.

21. G. Birtwistle, and J. Palme, Decsystem 10 SIMULA Language Handbook, Part L Available
as NTIS PB-243 064, Sept. 1974.

19

